Emergency Communications Resiliency Stack |
- A set of tools and methodologies for technology stewards to assess their own E-Resilience in their organizations and communities; then, supply the quantitative and qualitative findings to include in an AP-IS database for researchers and practitioners to use in analyzing national, cross-boarder, and regional strategies for addressing E-Resilience.
- Best-practices for developing community centered communications networks with options for reliable and proven back-haul and interconnection; along with their resilience to various disaster, geographic and socioeconomic constraints.
- Guidelines for building Business Continuity - Disaster Recovery Plans (BC-DRPs) that comply with emergency communications requirements; taking into consideration survivability & availability and Rapid Restoration of Access to Telecommunication (RReAcT) programs
The main contribution, of my talk, was to cover E-Resilience: i.e. resilient ICT networks (or better termed as "ICT services"), Support for disaster management systems, and ensuring last-mile disaster communication. The AP-IS initiative aims to enhance the resilience of existing/planned ICT infrastructure through methods such as enhanced network diversity, while recognizing the importance of resilient infrastructure to sustainable development and the critical role played by ICT in disaster risk reduction and management.
VIEW SLIDES - e-Resilience in support of Emergency Communication: “contingencies"
1. Telecom Resilience Analysis Tools and Methodologies
ITU's data can be used in a tools such as the Sahana Community Resilience Mapping Tool (CRMT) implemented for the Los Angeles County. The Sahana CRMT would use the inherent capabilities to overlay risk maps (hazard, vulnerability, and exposure GIS data) with the ITU infrastructure GIS data to analyze the vulnerabilities and then manage the mitigation plans on the telecom infrastructure. Moreover, it would allow for member states to manage and update their own jurisdictional information sets for the greater good.
Another effective tool and methodology is the Risk Assessment and Step-wise Refinement (RASTER). The tool allows for organizations and communities to model their critical infrastructure. It uses 5 basic components: actor, wireless, wired, equipment, and cloud (unknown) to link them and model the system architecture. Thereafter, apply a participatory approach to define the frequency of various threats and the impact (based on a likert scale) on the individual components that enable the service(s). The tool analyzes the data to, then, propose "quick win" mitigation strategies of the single and common points of failure. It is a simple and easy to use tools; free for all to adopt. LIRNEasia, recently, demonstrated the use of the tool and engaged participants in analyzing a scenario at APrIGF2018.
2a. Community Networks for bridging the Last-Mile
Source: AIT IntERLAb CWMN |
The demonstrated solution was based on an AIT IntERLab home-brewed mesh-network. The technology adopts a simple business model to connect marginalized communities. Basically, IntERLab floated startup: Taknet buys unlimited capacity for THB 750/mo per access point from the ISP. Thereafter, they optimally redistribute that capacity in the community. TakNet charges each user, accessing the pasticular community network, THB 250/mo. That generates enough income to support a Technician in the community and the upkeep of the hardware (routers and access points).
We also heard from CViSNET about the Nippon Telegraph and Telephon’s Movable Deployable Resource Unity (MDRU); developed after the 2011 Japan Earthquake and used in 2013 Cyclone Haiyan in the Philippines. The MDRU turnkey solution, especially the grab-n-go suitcase is quite versatile for rapidly restoring telecoms. It is capable on latching on to any 3GPP or ADSL back-haul to offer voice and data services.
Besides supporting RReAcT, the community networks serve a supplementary contribution to the AP-IS pillar: “broadband for all”. The initiative aims to bridge the digital divide, promote affordable access to under-served areas, and policy and technical support to Governments. Asia Pacific Network Information Center (APNIC) and the Internet Society (ISOC) are key advocates of community networks and are jointly investing resources in expanding such community networks.
2b. The Back-haul, critical single point of failure
Reporting delays since day of earthquake; mountain areas of Nepal. |
For example, an analysis, making use of large volumes of relevant social media data and a density-based clustering algorithm, revealed that it was not until the 4th day (pass the "72 golden hour") that public reports started coming in. The map to the left shows foot soldiers had to hike from one village to another to transmit incident reports.
A similar study in India learned that during the 2014 Jammu & Kashmir floods, one telco's base station equipment was submerged but the other's, on the second flood was unharmed. Although both telcos agreed to share the infrastructure, as per the Indian "intra circle roaming agreement" it took their engineers a day and a half to configure the systems to revive services; still that was 15 days after the onset of the flood.
We have also learned that point-to-point WiMax (2.4 & 5.2 GHz) for mountainous areas, LTE (700 MHz band) radio for Mars like terrain, and LEO satellites for small islands are proven as best-practices. Long distance point-to-point works well between mountains in the absence of obstacles. High frequency radio waves work well in the presence of obstacles but limits the distance. WiMax and LTE nodes require very little power. Nepal study revealed that service providers were able restart services using solar powered batteries and make-shift bamboo hoists for antennas. Why not have these configurations ready on a USB stick for quick plug-n-play?
TV White Space is emerging as an alternative for back-haul. Koreans, specifically the company Innonet, have working solutions that use TV White Space, proven economical, to use with specific surveillance solutions; i.e. networks of CCTV cameras. There are many such solutions that ESCAP AP-IS might consider classifying and documenting as best-practices for member states to consider as solutions in their emergency communications plans.
3. BC-DRP and Key Indicators for assessing the effectiveness
Components and inter-dependencies of ICT resilience in support of emergency communications. |
BC-DRP is a combination of preparedness and response with practical & proven plans. Preparedness must secure the continuity of the ICT services by setting KRIs that govern the survivability and availability. It is determined by realizing the incident “frequencies” and “impact” on the essential emergency services, then mitigating those vulnerabilities. One may apply a 80/20 rule to define factors: congestion, damage/break, power, interference, etc. Implementers must also include “social risk” in the KRIs as well. Typical social risks consider the affects on children, women, & elderly, trust in public goods, the amount of fear, so on.
KPIs are, typically, defined by the Mean Time To Failure (MTTF) & Mean Time To Repair or Recovery (MTTR). Some chose to use Mean Time Between Failure (MTBF) instead of MTTF. Ideally, the sum of MTTF (or MTBF) and MTTR must be zero (MTTF + MTTR = 0). However, it is practically impossible, given that we live in a world full of uncertainties. Therefore, national emergency communication planners may define their national MTTR to be less than 08 hours. To achieve such an ambitious KPI one must partner with various stakeholders. For example, agree with the domestic aviation industry to provide emergency transportation of communications equipment in time of a crisis.
The response component, of a BC-DRP, should consider a solid RReAcT program that make economic sense. That is achieved by setting the Recovery Time Objectives (RTOs). The RTOs must consider the human factors that are often neglected. Best-practice is to set service-based recovery times (e.g. Data first and Voice last or vise versa). Secondly, Recovery Point Objectives (RPOs) prioritize essential services; i.e. which organizations in the geographic locations must attain what capacity.